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Abstract

The well-known construction that was first introduced by L. S. Pontryagin in [1]
provides a geometric characterisation of homotopy groups of spheres, by equating
them with cobordism groups of framed submanifolds of Euclidean space. The theory
of cobordisms was then vastly expanded by R. Thom in [3], in which he defines the
oriented and unoriented cobordism groups and relates them to the homotopy groups
of some specially constructed spaces. Here we will answer the question: what sort
of “cobordism group” corresponds to the homotopy groups of an arbitrary finite CW
complex X? We introduce the notion of an X̃-manifold, which can be thought of as a
particular species of stratified space equipped with a normal framing, whose singular
structure is governed by the structure of the complex X. We then prove that the
homotopy groups of the CW complex X are isomorphic to the cobordism groups of
X̃-manifolds, and demonstrate some examples of this new geometric presentation.
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1 Introduction

The classical Pontryagin construction provides an isomorphism between the homotopy
groups of spheres and the cobordism groups of framed submanifolds of Euclidean space,
good accounts can be found in e.g. [2] and [4]. Starting with cobordism groups of manifolds
with some other structure such as orientation (or none at all), Thom found spaces whose
homotopy groups are related by an analogous construction. One can also turn the question
the other way, and ask: what sort of cobordism theory arises out of considering the
homotopy groups of a particular space? The objective of this paper is to answer this
question when the space is a finite CW complex X.

As it turns out, the objects of the resulting cobordism group are no longer manifolds,
but stratified spaces with a singular structure that arises out of the cellular structure of
X. These spaces are endowed with normal framing information on their strata, also in a
way that is restricted by X. Although it is likely possible to develop this theory using the
language of stratified spaces and normal framings, and imposing additional compatibility
conditions, we will instead take the route of defining the spaces directly in a way that
suits our needs. We will define objects called X̃-manifolds: very roughly speaking, these
are subspaces of Euclidean space that are locally endowed with tubular neighbourhoods
that fibre over regions of the “dual complex” X̃. A possibility for further research would
be to take the other route and show equivalence of this formulation with one that uses
stratified spaces in the sense of Thom or Whitney.

After stating the necessary definitions and going through the construction, we showcase
the geometric appeal of this approach by working through examples of low-dimensional
homotopy groups when X is Sn, RP 2, ΣRP 2, and Sn ∨ Sm.

2 X̃-manifolds and their cobordisms

2.1 Preliminaries

For a space Y , the cone on Y is the space Cone(Y ) := ((Y × I)
∐
∗) / ∼ where ∼ is the

relation given by (y, 1) ∼ ∗ for all y ∈ Y . Note that in particular, Cone(∅) = ∗. In the
special case when Y ⊆ Sn = ∂Dn+1, we view Cone(Y ) as a subset of Dn+1, with the cone
point at the centre of the (n+ 1)-disk, by identifying Cone(Sn) ∼= Dn+1.

We start with a finite CW-complexX with skeletaX0 ⊂ X1 ⊂ · · · ⊂ XN , characteristic
maps gij : Di → X for each 0 ≤ i ≤ N and 1 ≤ j ≤ ni, where ni is the number of i-cells
in X, with a selected 0-cell x0 ∈ X0 which will serve as the basepoint. We shall write
D̊i

(j) for gij(Int(Di)), the image of the interior of the jth i-cell in X, and cij for the centre

point of D̊i
j .

2



Figure 1: Construction of X̃ when X = e0 ∪ e1 ∪·3 e2

2.2 Construction of X̃

We construct the filtered space X̃0 ⊂ X̃1 ⊂ · · · ⊂ X̃N =: X̃ as follows:

• X̃0 consists of all 0-cells of X except for x0

• X̃i = X̃i−1 ∪
ni⋃
j=1

Cij where

Cij = gij(Cone(g−1
ij (X̃i−1))) ∩ D̊i

(j)

Inductively X̃i ↪−→ Xi since gij
(
∂Di

)
⊂ Xi−1 and so g−1

ij (X̃k−1) ⊂ ∂Di. We have

the inclusion Cij ↪−→ D̊i
(j) where the cone point is identified with cij .

n.b. that X̃ is a closed subset of X.

1 Example. If X is the CW decomposition of Sn with one n-cell, then X̃ = ∗. As we
shall see, this recovers the classical construction for homotopy groups of Sn.

2 Example. Consider X constructed by attaching a 2-cell to a circle by the ·3 map. X̃
looks like a tripod in this case (see figure 1).

3 Example. Let X be a cell complex with one cell in dimensions 1, 2, and 4: the 2-cell is
glued by the ·2 map, and the 4-cell is glued along q ◦ h, where q : S2 → RP 2 is the double
cover and h : S3 → S2 is the Hopf map. X̃ looks like a cone with a line drawn on it that
passes through the cone point (see figure 2).
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Figure 2: Construction of X̃ when X is the complex described in example 3

We need to define a subdomain of X on which an iterated retraction can be defined.

Let Xi
punc := Xi \

ni⋃
j=1
{cij}, ρi : Xi

punc → Xi−1 be the retraction consisting of retractions

on each punctured i-cell. Next, define:

Xi
0 punc := Xi

Xi
k punc := ρ−1

i (Xi−1
(k−1) punc)

for i ≥ k ≥ 1, and define maps:

ρ0
i,0 := idXi : Xi → Xi

ρni,k := ρn−1
i−1,k−1 ◦ ρi

∣∣
Xi
k punc

: Xi
k punc → Xi−n

(k−n) punc

for 1 ≤ n ≤ k. By ρ
(t)
i we will mean the deformation retraction defined linearly on each

cell, such that ρ
(0)
i = id and ρ

(1)
i = ρi.

2.3 The main definition

Let D̊i
j(ε) := gij(Nε(0)) ⊆ D̊i

j , where Nε(0) is the ball of radius ε around 0 ∈ Di, and let

Cij(ε) := Cij ∩ D̊i
j(ε) for 0 < ε ≤ 1.

4 Definition. A X̃-manifold in Rm is a compact subset M ⊂ Rm with an X̃-atlas: a
collection {(Uα, φα)} such that the Uα cover M and where each Uα is open in Rm, and
each

φα : Uα
∼−→ D̊iα

jα
(ε)× Rm−iα
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is a diffeomorphism for some iα ≤ m and 1 ≤ jα ≤ ni that restricts to a homeomorphism

φα
∣∣
Uα∩M : Uα ∩M

∼−→ Ciαjα(ε)× Rm−iα

and such that

1. Each Uα is bounded, with smooth boundary

2. Each φα extends uniquely to a map on Ū .

3. For any two charts U and V, ∂U t ∂V.

4. Any two intersecting charts are immediate, in the following sense:

We write φ̃ for the projected chart U φ−→ D̊i
j(ε)× Rm−i −→ D̊i

j(ε).

5 Definition. Two intersecting charts φ : U ∼−→ D̊i
j(ε1)×Rm−i and ψ : V ∼−→ D̊k

l (ε2)×Rm−k

with i ≥ k are immediate if φ̃(U ∩ V) ⊆ Xi
(i−k) punc and the following diagram commutes:

U ∩ V φ̃(U ∩ V)

ψ̃(U ∩ V) Xk

φ̃

ψ̃ ρi−ki

n.b. that (an embedding of) X̃ itself need not be an X̃-manifold.

6 Example. When X is the CW-decomposition of Sn with one n-cell, the immediacy
condition holds vacuously and an X̃-manifold is just a (m− n)-submanifold of Rm with a
tubular neighbourhood, or equivalently, a normally framed submanifold of Rm.

Remark. The purpose of the immediacy conditions is to require that the features inherited
from X̃ that are close together in M must correspond to adjacent features in X̃. In §4,
this will allow us to glue together charts of an X̃-atlas to construct a map into X.

Remark. The notion of X̃-manifold is very much dependent on the particular choice of cell
structure on X, i.e. it is not a homotopy invariant of X (or at least not in any obvious
way). In §5, we will explicitly demonstrate how different cell structures can give rise to
different presentations.

(a) X = e0 ∪ e1 ∪·1 e2 ∼= D2 (b) X = e0 ∪ e1 ∪·2 e2 ∼= RP 2

Figure 3: Some examples of X̃-manifolds in R2. We draw “hairs” purely as an illustrative
tool to evoke the right charts. In §5, we will discuss how these can be used more formally
to characterise the X̃-manifold.
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Figure 4: The first is an X̃-atlas for D2. The second isn’t, since U1 and U2 are not
immediate.

7 Definition. An X̃-manifold with boundary in Rm is the same as above except that for
some α we may have instead:

φα : Uα
∼−→ D̊iα

jα
(ε)×Hm−iα

for some iα ≤ m − 1 and 1 ≤ jα ≤ ni, where Hk = {(x1, . . . , xk) ∈ Rk : xk ≥ 0} is the
closed half-plane.

8 Definition. If M and M ′ are X̃-manifolds in Rm, an X̃-cobordism between them is an
X̃-manifold with boundary K ⊂ Rm × I ⊂ Rm+1 such that ∂K ⊂ Rm × {0, 1}, and for
some δ > 0 we have:

K ∩ (Rm × [0, δ)) = M × [0, δ)

K ∩ (Rm × (1− δ, 1]) = M ′ × (1− δ, 1]

as sets and all charts of the form

U × [0, δ)
φ×id−−−→ D̊i

j(ε1)× Rm−i × [0, δ)
∼−→ D̊i

j(ε1)×Hm−i+1

V × (1− δ, 1]
ψ×id−−−→ D̊k

l (ε2)× Rm−k × (1− δ, 1]
∼−→ D̊k

l (ε1)×Hm−k+1

are boundary charts compatible with the atlas of K, where φ, ψ are charts of M and M ′

respectively and the last maps are given by the diffeomorphism Rn × [0, 1) ∼= Hn+1.

2.4 X̃-morphisms

The following notion of morphism is almost certainly too rigid for general use, however it
is appropriate for the purposes of this paper. Furthermore, we will only use it in the case
of isomorphism:

9 Definition. Given X̃-manifolds M ⊂ Rm and N ⊂ Rn, an X̃-morphism f : M →
N is a smooth map f : M → N such that for every chart (V, ψ) in the atlas of N .
(f−1(V), ψ ◦ f

∣∣
f−1(V)

) is a chart compatible with the atlas of M .

Applying compactness gives us the following lemma:
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Figure 5: A D̃2-morphism.
Figure 6: Not a D̃2-morphism.

10 Lemma. If M is an X̃-manifold and M ′ is an X̃-manifold with the same underlying
set endowed with a sub-atlas of M (an X̃-atlas that is a subcollection of the atlas of M),
then M ∼= M ′. In particular, M is isomorphic to an X̃-manifold with a finite atlas, by
compactness.

11 Proposition. X̃-isomorphic manifolds are X̃-cobordant.

Proof. Let φ : M →M ′ be an X̃-isomorphism between X̃-manifolds in Rm. We build the
cobordism by a kind of mapping cylinder construction: let K be the quotient of the space
M × [0, 1]×{0, 1} by the relation defined by (x, t, 0) ∼ (x′, t′, 1) if f(x) = x′ and t = t′+ 1

2 .
The quotient is homeomorphic to the mapping cylinder of f , and embeds naturally in
Rm × [0, 1].

We endow K with a X̃-atlas: let the charts consist of the following:

U × [0, 1)× {0} −→ U × [0, 1)
φ×id−−−→ D̊i

j(ε)× Rm−i × [0, 1)
∼−→ D̊i

j(ε)×Hm−i+1

V × [0, 1)× {1} −→ V × [0, 1)
ψ×id−−−→ D̊k

l (δ)× Rm−k × [0, 1)
∼−→ D̊k

l (δ)×Hm−k+1

for charts φ of M and ψ of M ′ (the composites clearly descend to maps on the quotient
space K). The compatibility of these charts then follows from the fact that f is an X̃-
isomorphism.

12 Proposition. X̃-cobordism is an equivalence relation on the set of X̃-manifolds in
Rm.
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Proof. Symmetry is clear. Reflexivity can be checked by constructing a self-cobordism,
for instance using charts of the form U × [0, 1

2), U × (1
3 ,

2
3), and U × (1

2 , 1]. Transitivity
follows from the fact that we can concatenate two cobordisms and glue pairs of boundary
charts of the form U × (1 − δ] → D̊i

j(ε) × Hm−i+1 and U × [0, δ) → D̊i
j(ε) × Hm−i+1 into

non-boundary charts of the form U × (1− δ, 1 + δ)→ D̊i
j(ε)× Rm−i+1.

3 Transversality properties for X̃-manifolds

We now study some key geometric properties of X̃-manifolds. The first step is to find a
family of subsets of X whose preimages under a continuous map of a manifold into X are
submanifolds:

Let fij := gij
∣∣
∂Di

denote the attaching maps of the CW complex. Let rk : Dk \
{∗} → ∂Dk be the retraction. For each D̊i

j , we iteratively construct a canonical open

neighbourhood Eij , the open star of D̊i
j , as follows:

Eij(0) :=D̊i
j

Eij(k + 1) :=Eij(k) ∪
nk⋃
l=1

gkl
(
r−1
k

(
f−1
kl (Eij(k))

))
Eij :=

∞⋃
k=i

Eij(k)

Each Eij(k) is open in Xk (by induction), thus Eij is an open neighbourhood of D̊i
j . At

each step we have retractions Eij(k) −→ Eij(k−1) consisting of the retractions on each cell.

Chaining these together we get a retraction rij : Eij → D̊i
j .

f−1(Eij) is an open subset of M , and so a manifold, whence the following definition
makes sense:

13 Definition. Let V be a smooth manifold. A map f : V → X is transverse if for all
i, j the map rij ◦ f

∣∣
f−1(Eij)

: f−1(Eij)→ D̊i
j is smooth on a neighbourhood of f−1(cij) and

has cij as a regular value.

14 Definition. We say a CW complex X is transversely constructed if every attaching
map fij : ∂Di → Xi−1 is transverse to Xi−1.

The following crucial result is an analogue of the Thom Transversality Theorem and
is stated without proof:

15 Theorem. Suppose X is a transversely constructed CW complex. Then for any
smooth manifold V and any map f : V → X, there exists a map f ′ : V → X homotopic
to f and transverse to X.

By applying this result skeleton by skeleton, starting with X1, we can conclude:

16 Corollary. Every CW complex is homotopy equivalent to a transversely constructed
one.

From now on, we will assume that X is transversely constructed. The strata of X̃ are
the sets Σ̃i

j = (rij)
−1(cij) ⊂ Eij ⊂ X. Observe that Ckl =

⋃
i,j

Σ̃i
j ∩ D̊k

l and X̃ =
⋃
i,j

Σ̃i
j .

The strata themselves are not manifolds, however it turns out that their preimages are.
The following Proposition echoes the standard transversality result on which the classical
construction is based:
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17 Proposition. If V is a smooth manifold and f : V → X a transverse map, f−1(Σ̃i
j)

is a codimension i submanifold of V . Moreover, f−1(Σ̃i
j) has a canonical normal framing

in V .

Proof. By the transversality condition on f , f−1(Σ̃i
j) = (rij ◦ f

∣∣
f−1(Eij)

)−1(cij) is a codi-

mension i submanifold of V , with the framing given by pulling back the canonical framing
of cij ∈ D̊i

j
∼= Ri.

18 Theorem. If f : (Sm,∞) → (X,x0) is a based map transverse to X, viewing Sm =
Rm ∪ {∞}, f−1(X̃) ⊂ Rm is an X̃-manifold.

Proof. Let M := f−1(X̃) ⊂ Rm, it remains to find an X̃-atlas for M that makes it into
a X̃-manifold. We first observe that M is compact: this follows from the fact that f is a
pointed map and X̃ is a closed subset of X not containing the base point x0.

Since our CW complex is finite, we can start from the top dimensional cells D̊N
j .

Observe that Σ̃N
j = {cNj}, ENj = D̊N

j , and rNj = idD̊Nj
in this case. Thus, by the

transversality condition on f , cNj is a regular value of f
∣∣
f−1(D̊Nj )

. Therefore we have that

every x ∈ f−1(cNj) has an open neighbourhood Uj(x) on which f is a submersion onto

some D̊N
j (εj(x)), moreover using the local form of a submersion we can choose the εj(x)

small enough so that we have a diffeomorphism φ making the following diagram commute:

Uj(x) D̊N
j (εj(x))× Rm−i

D̊N
j (εj(x))

f
∣∣∣
Uj(x)

∃φ∼

π

By slightly shrinking a chart if necessary, we can also ensure that it satisfies conditions 1-3.
Thus we have obtained charts covering f−1(cNj) for each j. Note that ρN : XN

punc → XN−1

restricts to a map X̃ ∩ XN
punc → X̃N−1. Then letting f ′ := ρN ◦ f : Sm \ f−1(XN

punc) →
XN−1, we have that (f ′)−1(X̃ ∩XN

punc) = f−1(X̃ ∩XN
punc) and f ′ is transverse to XN−1,

so we can apply the above construction again to obtain charts for the (preimages of)
(N −1)-strata of X̃, and so on. Once we have reached the bottom, the collection of charts
that we have obtained will cover M .

It turns out that all charts so obtained that intersect are immediate to each other:
indeed, for every chart φ : U → D̊i

j×Rm−i that we have created, we have φ̄ = ρN−ii,N−i ◦f
∣∣
U .

The immediacy condition then follows due to the fact that ρai−k,k−n ◦ ρbi,k = ρa+b
i,k .

4 The X̃-cobordism group and the main result

As we have seen in Proposition 12, X̃-cobordism induces an equivalence relation on the

set of X̃-manifolds in Rm. We will call the resulting quotient ΩX̃
m. The following fact is

completely analogous to the classical case:

19 Proposition. ΩX̃
m is a group, under the operation of disjoint union in Rm.

20 Theorem. πm(X) ∼= ΩX̃
m.

We start by defining the map d : [Sm, X]→ ΩX̃
m: for [f ] ∈ [Sm, X]. Choose a represen-

tative f that is transverse to X (Theorem 15), apply Theorem 18 to obtain an X̃-manifold
M ⊂ Rm, and define d([f ]) = M . To check that this gives a well-defined map, it remains
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to check that given a pair of maps f, f ′ : Sm → X with a homotopy H : Sm× I → X, the
X̃-manifolds associated to f and f ′ are X̃-cobordant. This follows by applying the same
construction to the homotopy H but in “relative form”: i.e. after replacing H by a trans-
verse approximation, and deforming H to be constant on Sm × [0, δ) and Sm × (1− δ, 1]
for some small δ, we construct an X̃-atlas for H−1(X̃) as in Theorem 18 but this time
subject to the constraint that we already have boundary charts defined on Rm× [0, δ) and
Rm × (1− δ, 1]. This ensures well-definedness of d up to cobordism, with respect to both
homotopy of maps and the choices made in the construction.

The fact that d is a homomorphism is clear, by analogy with the classical case. It
remains to prove that it is an isomorphism. We make need the notion of manifold with
corners, see e.g. [5] for a reference. We will also make use of the following two properties:

21 Lemma (Straightening Corners). Given a manifold with corners V , there is a manifold
with boundary (and without corners) V ′ and a homeomorphism h : V

∼−→ V ′ which restricts
to a diffeomorphism away from the corner points of V .

22 Lemma. If V is a manifold with boundary and {Wi} is a finite collection of codimen-
sion 0 submanifolds of V with boundary such that ∂Wi t ∂V for all i and ∂Wi t ∂Wj for
all i 6= j, then V \ Int(

⋃
i
Wj) is a manifold with corners.

23 Proposition. d is surjective.

Proof. Let M ⊂ Rm be an X̃-manifold. We construct a map f : Sm → X such that
d([f ]) 'M . By Lemma 10, we can assume that the atlas {(Uα, φα)} of M is finite.

We start by defining f on the domain of the highest dimensional charts: let F =⋃
iα=N

Uα =
⋃

iα=N

Uα (as there are only finitely many), then we can define f on F by letting

f
∣∣
Uα = φ̃α and extending to each Uα. The immediacy condition guarantees that this is

well-defined. Let A := Rm \ Int(F), by Lemma 22 this is a manifold with corners; our goal
is now to extend f from ∂A to all of A. We apply Lemma 21 to obtain a smooth structure
without corners on A, we then apply the Collar Neighbourhood Theorem to get a closed
neighbourhood C1 of ∂A with C ∼= ∂A × [0, 1], moreover C can be chosen such that its
boundary is transverse to the boundaries of all (N−1)-charts V. Note that f(∂A) ⊆ XN

punc,

so we may extend f to C by defining f(x, t) = ρ
(t)
N (f(x)). Letting A′ = A \ Int(C), A′ is a

manifold with boundary and f(∂A′) ⊆ XN−1.
We can now apply induction on the dimension of X, since the above argument can

be repeated with A′ in place of Rm and N − 1 in place of N , and so on. When we have
reached the bottom, we will have f defined on some compact subset of Rm with f sending
the boundary of this subset to x0. Finally, we define f to be constantly x0 on the rest of
Sm.

Let N := d(f), it remains to check that we have N ' M . First, we note that by
the above construction we have f−1(X̃) = M , so the two are equal as sets. We show
that the identity map M → N is an X̃-isomorphism, possibly after rechoosing N , from
which M ' N follows by Proposition 11. To do this, we need the charts of M and N
to be compatible: let ψ : V → D̊k

l (ε2) × Rm−k be a chart of N . By looking inside the
construction of d(f), we know that ψ = ρN−kk,N−k ◦ f

∣∣
V , where V is some neighbourhood of

f−1(ckl). Moreover, we can redo the construction, this time choosing V small enough to
be entirely contained in some k-chart φ of M . By well-definedness of d, N can be chosen
to have this property for all charts V. Then, by the construction of f , we have f

∣∣
V = φ,

so ψ = ρN−kk,N−k ◦ φ which is clearly compatible with all charts φ′ of M , and vice versa.

1We would also like to ensure that for any chart ψ defined on a region of C, ψ(x, t) = ρ
(t)
N (f(x)), which

can be done by shrinking the N -charts slightly so that the collar lies entirely inside some N -chart, and
requiring the parametrisation of the collar to agree with the radial parametrisation of that chart.
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Injectivity of d follows by applying the same argument but in “relative form”: given a
cobordism K between d(f) and d(g), using the same techniques we can construct a map
H that agrees with f and g on the boundary planes and which will serve as the required
homotopy f ' g.
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5 Examples & Applications

Before sketching some examples, it is helpful to review the relationship between X̃-
manifolds and normal framing.

24 Definition. For a stratum Σ̃i
j of X̃ and an X̃-manifold M ⊂ Rm, the (m− i)-stratum

of M corresponding to Σ̃i
j is the set

Σi
j =

⋃
α

(πα ◦ φα)−1(Σ̃i
j)

where the union is taken over all charts, and πα is the projection onto the first compo-

nent. Each Σi
j is an (m−i)-submanifold of Rm with boundary

⋃
β

φ−1
β

(
(Σ̃i

j ∩ D̊
kβ
lβ

)× ∂Hm−kβ
)

,

where the union is taken over only the boundary charts.
Every π ◦ φ : U → X is transverse to X, therefore every (π ◦ φ)−1(Σ̃i

j) is normally
framed, by Proposition 17. Moreover, the chart compatibility conditions ensure that these
framings glue together to give a framing of all of Σi

j . In places where the strata meet,

their framings will be locally modelled on the behaviour of the strata in X̃.
It is likely to be the case that a converse result can be formulated: that is to say, that an

embedded stratified space with normal framings of its strata satisfying some compatibility
conditions uniquely gives rise to an X̃-manifold. Such a result can be viewed as an X̃-
analogue of the Tubular Neighbourhood Theorem. While we do not pursue this any
further, it is very useful to informally adopt this “infinitesimal” perspective when working
with examples, to avoid having to manually specify the X̃-charts. We have already used
this trick when presenting some of the examples in §2.

We will also use the trick of colouring each stratum of X̃ or an X̃-manifold with a
unique colour. This graphically forbids the passage from one stratum to another in the
absence of a third stratum that can mediate the transition.

5.1 Alternative CW decompositions of Sn

As we have already seen, taking X to be the cell structure on Sn consisting of one 0-cell
and one n-cell, we recover the familiar theory. In a previous remark, we had noted that we
will get a different construction if we choose a different cell structure, so we now investigate
what happens when X is the cell structure of S2 consisting of two 2-cells glued to a circle.

Figure 7: X̃ when X consists of two 2-cells glued to a circle.

The generator of π2(S2) looks like:
The generator of π3(S2) looks like:
If we take an even more extravagant cell structure: with two 0-cells, two 1-cells, and

two 2-cells, we get the following X̃:
and the generators of π2 and π3 become, respectively:
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5.2 RP 2 and ΣRP 2

This is the cobordism that trivialises twice the generator of π1(RP 2):

ΣRP 2 has a cell structure with a 3-cell attached to a sphere via the ·2 map. The
resulting X̃ is:

Something interesting happens in π3(ΣRP 2): first, observe that the Hopf map has order
2 in this group: this can also be seen from the cobordism picture by drawing the framed
circle corresponding to the Hopf map h, introducing two red points, and then bringing
them around the circle to annihilate each other on the opposite side. The resulting object
is a circle with the framing twisted in the opposite direction, so we have shown that
h = −h.

Next, we notice that h can be factored as 2 · h2 , where h
2 is the following X̃-manifold:

5.3 Sn ∨ Sm

The last examples we consider are wedges of spheres. Taking the cell structure for Sn∨Sm
consisting of one 0-cell, one n-cell, and one m-cell, X̃ consists of two points: the centre
points of the two spheres. Thus we see that πi(S

n ∨ Sm) corresponds to pairs of disjoint
framed submanifolds of Ri modulo pairs of disjoint framed cobordisms. The additional
complexity of these groups comes from the fact that the manifolds can get tangled.

For example, π3(S2 ∨S2) ∼= Z3: the first two generators come from π3(S2) via the two
inclusions S2 ↪−→ S2 ∨ S2, while the third generator is:

i.e. the third Z factor corresponds to the linking number of the pair.

6 Conclusion

The result proved here heavily relies on the transverse approximation result of Theorem
15, whose proof could be the subject of future work. Another immediate avenue worth
pursuing would be to complete the “infinitesimal” characterisation of X̃-manifolds, which
appears to be a natural way of viewing the objects studied here. To do this, we would
need to prove some sort of converse to Definition 24: i.e. that an embedded stratified
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space with normal framings of its strata, that also satisfies some compatibility conditions
dictated by X, defines a unique X̃-manifold.

An interesting project would be to apply the construction in this paper to the CW
complex of a Thom space, and determine if the resulting X̃-cobordism theory is manifestly
equivalent to the cobordism theory of manifolds with the structure whose Thom space we
started with.
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