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Chain Complexes as a Higher Category

1 Introduction

One of the ‘philosophical’ achievements of category theory is the creation of an effective language
using which we can replace a claim of strict equality between objects with the exhibition of
an isomorphism. If appropriate, this isomorphism could be shown to be unique or natural.
Moreover, this style of reasoning yields vast practical benefits, especially in the fields of Algebra
and Topology, where many arguments can be expressed in a conceptually efficient way using
notions like naturality, universal property, adjunction, etc.

One thing that is missing from the definition of a (ordinary) category is the concept of
higher morphisms, i.e. ‘maps’ (or ‘relations’) between ordinary morphisms. This bounds the
extent to which we can enforce the ‘categorical philosophy’ described above. For instance, when
asking that composition of morphisms be associative, we have to insist on strict equality of two
morphisms (which after all, are often functions, and thus sets), in contravention of our program
of doing away with strict equality. Therefore, it is natural to attempt to extend the definition
of a category to one where we have in addition to objects and morphisms, 2-morphisms (which
‘relate’ morphisms). Continuing in this way, we would like to have a notion of n-morphisms
(which ‘relate’ (n− 1)-morphisms) for all n, and as a result, we hope to obtain something that
we could call an ∞-category.

There are a two things to note at this stage. The first is that attempting a definition
along the lines of the ordinary definition of a category (a collection of objects, for every pair
of objects a set of 1-morphisms, for every pair of 1-morphisms a set of 2-morphisms, etc. such
that the following conditions are satisfied...) quickly leads one to appreciate the unexpected
complexity of the task at hand. To get a taste of this, observe what happens when one tries
to relax associativity of composition of morphisms. Instead of h ◦ (g ◦ f) = (h ◦ g) ◦ f , we will
instead have a family of natural 2-isomorphisms ah,g,f : h ◦ (g ◦ f)

∼−→ (h ◦ g) ◦ f , which should
satisfy a “pentagon identity” (familiar from the definition of weak monoidal categories). But
commutativity of the pentagon is again an assertion of equality (this time among the ah,g,f ), so
we need to replace it with yet another weakening in terms of 3-morphisms, and so on. Weakening
associativity isn’t the only problem, since in this setting it turns out that there is more than one
way to compose n-morphisms: for instance 2-morphisms can be composed both ‘vertically’ and
‘horizontally’. These different kinds of composition (called pasting) need to satisfy additional
rules (but of course only up to higher isomorphism). This unsettling experience suggests to us
that we should explore some other route to defining an ∞-category.

The second thing to note arises when considering examples of (hypothetical, for now) ∞-
categories. One example is the category of topological spaces with morphisms the continuous
maps, 2-morphisms the homotopies between maps, 3-morphisms the homotopies between homo-
topies, and so on. At this point we are reassured that our worrying about weak associativity in
the preceding paragraph was not unfounded, as indeed the familiar composition of homotopies
is well-defined only up to reparametrisation of homotopies, i.e. a 3-isomorphism. This example
suggest another important feature: while all continuous maps need not be invertible, it happens
to be the case that all homotopies (and homotopies between them, and so on) are invertible,
i.e. all n-morphisms are isomorphisms for n ≥ 2. Chain complexes (over an Abelian category),
which are analogous in many ways to topological spaces, also appear to have this property.
These examples lead us to look for a formalisation of ∞-categories with the property that all
n-morphisms are invertible for n ≥ 2. Such an object is often referred to as an (∞, 1)-category.

There are multiple fruitful definitions of an (∞, 1)-category, which include: complete Segal
spaces, Segal categories, and quasi-categories. Substantial work has been done in relating these
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notions. Here we will examine the last of the three, which are also known as weak Kan complexes,
and were first introduced by Boardman and Vogt in [1] and developed by Joyal in [2]. After
explaining the definitions, we will work through the specific example of Ch(RMod) as an
∞-category to verify that the desires laid out in the paragraphs above have been adequately
satisfied.

Note that, throughout the report, we will ignore set-theoretical issues, such as size, in our
definitions. If any foundational issues do arise from the assertions made here, the reader is
assured that the definitions can be repaired by making suitable distinctions.

2 Definitions

2.1 Simplicial Sets

Definition 1. The simplex category ∆ consists of the finite totally ordered sets, with order-
preserving functions between them.

We will denote the totally ordered set {0 < 1 < · · · < n} by [n].

Definition 2. A simplicial object in a category A is a contravariant functor A : ∆→ A.

Letting An = A([n]), and A(α) = α∗ for α : [m] → [n], a simplicial object A can be viewed
as a collection {An}n≥0 of objects of A together with maps α∗ : An → Am that are induced by
the order-preserving functions α : [m] → [n]. We can simplify this presentation by observing
the following:

Proposition 3. Let εi : [n] → [n + 1] be the ith face map, the order-preserving injective
function with image [n + 1] − i, and let ηj : [n + 1] → [n] be the j-th degeneracy map, the
order-preserving surjective function which maps two elements to i. Then every order-preserving
function α : [m]→ [n] can be uniquely decomposed as α = εi1εi2 . . . εisηj1ηj2 . . . ηjt .

Another helpful result that will be stated without proof is:

Proposition 4. The face and degeneracy maps satisfy the following identities:

εjεi = εiεj−1 if i < j

ηjηi = ηiηj+1 if i ≤ j

ηjεi =


εiηj−1 if i < j

id if i = j, j + 1

εi−1ηj if i < j + 1

Using these results, we can recharacterise a simplicial object as a collection {An}n≥0 of
objects of A together with face operators ∂i : An → An−1 and degeneracy operators σi : An →
An+1 (for 0 ≤ i ≤ n), which satisfy the above identities. The equivalence of this characterisation
follows from the existence and uniqueness of the decomposition and the functoriality of A.

The simplicial objects of A with natural transformations between them form a category sA.
The most important case for our purposes are simplicial sets (where A is Set), which we will
use to define ∞-categories.

As a ‘building block’ for sSet, we introduce the standard n-simplex ∆n := Hom∆(−, [n]),
which is a simplicial set, with (∆n)i = Hom∆([i], [n]). This definition is motivated by the analogy
between ∆n and the standard geometric n-simplex |∆n| ⊆ Rn+1. If A is any simplicial set, using
the Yoneda Lemma, we see that there is a natural bijection of sets

An ∼= HomsSet(∆
n, A)
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which suggests the interpretation that the set An corresponds to the different ways of mapping
∆n into A, i.e. the set of n-simplices in A. Accordingly, we will often refer to the elements of
A0 as vertices, elements of A1 as edges, and so on.

Example 5. For a topological space X, there is the singular simplicial set SingX where
(SingX)n := HomTop(|∆n|, X) is the set of singular n-simplices in X. ∂i associates to a singular
n-simplex its ith face, and σi associates to an n-simplex the degenerate (n + 1)-simplex with
the vertex i repeated. This extends to a functor Sing(−) : Top → sSet. Sing(−) admits a
left adjoint which takes a simplicial set A to a CW -complex |A|, its geometric realisation. The
details of this construction are not needed for our purposes, but it is worth knowing that we can
always picture a simplicial set geometrically (though most will be infinite dimensional).

2.2 Quasi-categories

Our aim is to define ∞-categories combinatorially, as a special kind of simplicial set. Before we
do this, it is worth examining how a simplicial set can represent an ordinary category:

Definition 6. Let C be a category, then the nerve of C is the simplicial set N(C) defined by:
N(C)n = HomCat([n], C) (where the poset [n] is viewed as a category). Explicitly, the elements

of N(C)n are sequences X0
f1−→ X1

f2−→ . . .
fn−→ Xn of n composable morphisms of C, the ith face

of which is the sequence:

X0
f1−→ X1

f2−→ . . .
fi−1−−−→ Xi−1

fi+1◦fi−−−−→ Xi+1
fi+2−−−→ . . .

fn−→ Xn

and the ith degeneracy is given by:

X0
f1−→ X1

f2−→ . . .
fi−→ Xi

idXi−−−→ Xi
fi+1−−−→ . . .

fn−→ Xn

The nerve construction is our first taste of how categorical structure can be encoded using
simplicial sets. In fact, we can completely recover the structure of C from N(C): the objects of C
are the vertices of the nerve and the morphisms the edges. To recover composition, we observe

that two appropriately oriented edges φ = X
f−→ Y and ψ = Y

g−→ Z in the nerve will share a

common face τ = X
f−→ Y

g−→ Z, and the desired composite is the edge ∂1(τ) = X
g◦f−−→ Z. This

simplicial interpretation of morphism composition motivates the following definition:

Definition 7. The kth horn Λnk of ∆n is the simplicial set obtained by removing from ∆n the
single (non-degenerate) n-cell and its jth face (along with all of their degeneracies). Formally,
(Λnk)i ⊆ (∆n)i = Hom∆([i], [n]) consists of the order-preserving functions f : [i]→ [n] such that
{k} ∪ f([i]) 6= [n].

We have just seen (the image of) the horn Λ2
1 appear in the nerve construction above, as the

composable pair of edges φ and ψ.

Y

X Z

gf

g◦f

Crucially, we relied on the fact that φ and ψ were the edges of a face τ , whose third edge
represented the composite g ◦ f . Formally, this means that the map of the horn Λ2

1 → N(C)
can be extended to a map of the whole triangle ∆2 → N(C), i.e. that we can ‘fill’ the horn.
This leads us to the thought that in order to have a notion of composition, this must always be
possible, which is the content of the main definition of this paper:
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Definition 8. A quasi-category (or weak Kan complex ) is a simplicial set K with the additional
property that every map Λnk → K with 0 < k < n can be extended to a map ∆n → K.

There two technical aspects of this definition that are worth commenting on. Firstly, the
‘outer horns’ Λn0 and Λnn are not required to be ‘fillable’, meaning that they don’t correspond to
morphisms that need to be composable. In the nerve example above where n = 2, this reflects
the fact that we should be able to compose g and f but given some f : X → Y and h : X → Z
we don’t always need to be able to factor h = g ◦ f for some g. A simplicial set in which all
horns can be filled is called a Kan complex.

Secondly, the extension need not be unique, unlike the nerve example. As we shall see
shortly, in a quasi-category, given morphisms (edges) f and g there could be more than one edge
representing their composite. In fact, if it is the case that all of the fillers are unique, then K
must be the nerve of some ordinary category1.

3 Low-Dimensional Behaviour

In order to better understand this definition, we will now work through the low-dimensional
behaviour. The objects of our quasi-category are the vertices of K and the edges correspond to
1-morphisms: if φ ∈ K1 then φ can be thought of as a morphism ∂0(φ)→ ∂1(φ).

Definition 9. Let K be a quasi-category, and let X,Y ∈ K0.

(i) φ ∈ K1 is a morphism X → Y if ∂0(φ) = X and ∂0(φ) = Y .
(ii) the identity morphism at X is the degenerate 1-simplex ιX := σ0(X).
(iii) for Z ∈ K0 and morphisms φ : X → Y and ψ : Y → Z, we write ψ ◦ φ for any morphism

χ : X → Z such that there exists τ ∈ K2 with ∂0(τ) = ψ, ∂1(τ) = χ, and ∂2(τ) = φ.

Remark. The existence of at least one such morphism χ : X → Z is guaranteed by the inner
horn condition.

We turn to 2-morphisms, which are exhibited by 2-cells: if φ and ψ are edges between the
same two vertices, i.e. ∂0(φ) = ∂0(ψ) = X and ∂1(φ) = ∂1(ψ) = Y , then a 2-morphism φ ⇒ ψ
is a ‘collapsed’ 2-simplex τ ∈ K2 such that ∂0(τ) = ιY , ∂1(τ) = ψ, and ∂2(τ) = φ.

X Y

φ

ψ

τ is represented by:

Y

X Y

τ
ιY

φ

ψ

Definition 10. Let K be a quasi-category. For φ, ψ : X → Y morphisms of K, we say τ ∈ K2

is a 2-morphism (or homotopy) φ ⇒ ψ if ∂0(τ) = ιY , ∂1(τ) = ψ, and ∂2(τ) = φ, and we write
φ ' ψ. The identity 2-morphism at φ is the degenerate 2-simplex jφ = σ1(φ).

Proposition 11. For objects X,Y ∈ K0 and morphisms φ, ψ : X → Y , we have:

(i) φ ' φ
(ii) ιY ◦ φ ' φ
(iii) φ ◦ ιX ' φ
(iv) if φ ' ψ and ψ ' χ, then φ ' χ.
(v) if φ ' ψ then ψ ' φ.

Proof. (i), (ii), and (iii) follow immediately from the definitions.

1For a proof of this, see [5].
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(iv) ιY ' ιY , so we can apply the inner horn condition to the following horn:

(v) Apply the inner horn condition to the following horn, and then apply (iv).

So ' is an equivalence relation, and in particular is symmetric, so every 2-morphism is a
2-isomorphism. We could have alternatively defined ' so that:

X Y

φ

ψ

τ is represented by:

X

X Y

τ
ιY

φ

ψ

It is not hard to see that we would have obtained the same relation: we deduce this by applying
the inner horn condition and (ii), (iii), and (iv) above to the following horn:

We can now show that composition, while not uniquely defined, is well-defined up to 2-
isomorphism:

Proposition 12. If χ and χ′ are two composites ψ ◦ φ, then χ ' χ′.

Proof. Apply the inner horn condition to:

5



Weak associativity now follows easily:

Proposition 13. For objects X,Y, Z,W ∈ K0 and morphisms φ : X → Y , ψ : Y → Z,
χ : Z →W , χ ◦ (ψ ◦ φ) ' (χ ◦ ψ) ◦ φ.

Proof. Apply the inner horn condition to:

Thus χ ◦ (ψ ◦ φ) is a composite (χ ◦ ψ) ◦ φ, so by the previous Proposition, χ ◦ (ψ ◦ φ) '
(χ ◦ ψ) ◦ φ.

Now that we have understood composition of morphisms and the relation ', what can be said
about composition of 2-morphisms? By applying the inner horn condition to the horns Λ3

1 and
Λ3

2, we get two distinct arrangements of three 2-morphisms that can be composed into a single
2-morphism. We have already used both of these compositions to prove some of the Propositions
about ' above. The first of these gives vertical composition as a special case (when one of the 2-

morphisms is taken to be the identity), while the second gives horizontal composition. By letting
two of the 2-morphisms be the identity, we can also define the composition of a 2-morphism with
a 1-morphism (in two different ways), which is called whiskering :

W X Y Z
f

φ

ψ

g
τ composes to: W Z

g◦φ◦f

g◦ψ◦f

g◦τ◦f

Motivated by the same geometric intuition, we can make the following definition:
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Definition 14. Given X,Y ∈ K0, morphisms φ, ψ : X → Y , and two 2-morphisms τ, υ : φ⇒ ψ,
we say that ρ ∈ K3 is a 3-morphism τ V υ if:

∂0(ρ) = jιY
∂1(ρ) = υ

∂2(ρ) = τ

∂3(ρ) = jφ

As before, we can prove that the relation that this defines is an equivalence relation, this
time by appealing to the existence of 4-dimensional horn fillers. Using this, we can prove that
the (horizontal/vertical) composition of 2-morphisms is weakly associative and well-defined up
to 3-isomorphism. We can also prove the “interchange rule” using similar arguments.

Of course, the purpose of this definition of∞-category is to guarantee all of these properties,
as well as their generalisations to all higher dimensions. By working through the low-dimensional
examples, we have seen how this simple combinatorial definition subsumes the myriad of com-
plicated conditions mentioned in the introduction.

4 Constructing ∞-Categories

We have examined the behaviour of morphisms in an abstract quasi-category, which agree with
our intuition of what an ∞-category should look like. However, it is not immediately clear how
we can endow an ordinary category with the necessary simplicial set structure to make it the
∞-category we want. As we saw, the nerve N(C) of an ordinary category C is a quasi-category,
but does not carry the additional structure we are looking for: all n-morphisms (as we defined
them in the previous section) are trivial for n ≥ 2. To obtain a non-trivial quasi-category, we
will need to provide more structure.

We will show how to obtain quasi-categories in two different ways: from simplicially enriched
categories and differential graded categories. The former is a more flexible approach, which we
will now outline but not pursue. The latter will be more convenient to apply to the example of
chain complexes, which we study in the next section.

Definition 15. A simplicial category is a category enriched over sSet. Cat∆ will denote the
category of (small) simplicial categories.

As a starting point, by analogy with how we used [n] in our definition of the nerve, we define
a simplicial category C[∆n].

Definition 16. The simplicial category C[∆n] is defined as follows: the objects of C[∆n] are
the objects of [n]. For i, j ∈ [n], have:

HomC[∆n](i, j) =

{
∅ if i > j

N(Pi,j) if i ≤ j
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where the poset Pi,j := {I ⊂ {i, i + 1, . . . , j} : i, j ∈ I} is viewed as a category and N is the
nerve defined earlier. Composition is induced by the map (Pi,j , Pj,k) 7→ Pi,j ∪ Pj,k.

C[∆n] is just [n] with more morphisms: for i ≤ j, instead of exactly one morphism i → j,
C[∆n] has one morphism for each increasing sequence i = i0 < · · · < ik = j (and the collection
of these increasing sequences is a simplicial set).

Definition 17. The simplicial nerve of a simplicial category C is the simplicial set Ns(C) given
by Ns(C)n = HomsSet(∆

n,Ns(C)) := HomCat∆
(C[∆n], C).

Theorem 18. Let C be a simplicial category such that every Hom-set is a Kan complex. Then
Ns(C) is a quasi-category.

Proof. See [5].

5 Chain Complexes

We are now ready to turn the category of chain complexes of R-modules into a quasi-category,
by showing that they form a differential graded category. Another more general method uses
the Dold-Kan correspondence (see [3]) to associate to each pair of chain complexes a simplicial
set, which turns out to be a Kan complex, and then applying the simplicial nerve construction
from Section 4 to obtain a quasi-category. Here we will use a different method which lends itself
particularly well with dealing with chain complexes and which will make it easier to explicitly
work out the low dimensional morphisms2.

5.1 Preliminaries

Definition 19. A differential graded category C consists of a collection of objects, for every two
objects X and Y a chain complex of Abelian groups HomC(X,Y )•, a collection of bilinear maps

◦ : HomC(Y,Z)q ×HomC(X,Y )p → HomC(X,Z)p+q

that satisfy the “Leibniz rule” d(g ◦ f) = dg ◦ f + (−1)qg ◦ df and are associative so that
(h ◦ g) ◦ f = h ◦ (g ◦ f), and for each object X, identity maps idX ∈ HomC(X,X)0 such that
f ◦ idX = f and idX ◦g = g for all f ∈ HomC(X,Y )p and g ∈ HomC(Y,X)q.

Similarly to simplicial categories, there is a nerve construction that allows us to obtain a
quasi-category from any differential graded category:

Definition 20. Let A be a differential graded category, then the differential graded nerve is
the simplicial set Ndg(C) defined as follows: Ndg(C)0 consists of the objects of C, and for n ≥ 1
Ndg(C)n is the set of all ordered pairs ({Xi}0≤i≤n, {fI}I) where each Xi is an object of C and
for a subset I = {i− < im < im−1 < · · · < i1 < i+} ⊆ [n], fI is an element of HomC(Xi− , Xi+)m
that satisfies:

dfI =
∑

1≤j≤m
(−1)j(fI−{ij} − f{ij<···<i1<i+} ◦ f{i−<im···<ij})

where the sum is 0 when m = 0.
The ith face map ∂i : Ndg(C)n → Ndg(C)n−1 is given by:

∂i

(
({Xi}0≤i≤n , {fI}I)

)
=
(
{Xα(j)}0≤j≤(n−1), {fεi(J)}J

)
2See Proposition 1.3.1.17 of [7] for a proof that the two constructions yield equivalent results, in a sense that

is defined in [5].
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This combinatorial definition looks obscure, but is fairly easy to compute for small n in
concrete examples, as we shall see. The following result, found in [7]3, assures us that we get a
quasi-category from any differential graded category. Moreover, the construction can be used to
obtain explicit expressions for the composition of morphisms in a differential graded category.

Theorem 21. The simplicial set Ndg(C) is a quasi-category for any differential graded category
C.

Proof. Let K = Ndg(C). We need to show that every map Λnk → K extends to a map ∆n → K
when 0 < k < n. The kth horn corresponds to a pair ({Xi}0≤i≤n, {fI}I) where I ranges over
subsets {i− < im < im−1 < · · · < i1 < i+} ⊆ [n] such that I 6= [n], [n]−{k} and where all of the
fI ∈ HomC(Xi− , Xi+)m satisfy:

dfI =
∑

1≤j≤m
(−1)j(fI−{ij} − f{ij<···<i1<i+} ◦ f{i−<im···<ij}) (?)

This can be extended to a pair ({Xi}0≤i≤n, {fI}I) where I now ranges over all subsets {i− <
im < im−1 < · · · < i1 < i+} ⊆ [n] by setting:

f[n] = 0 (1)

f[n]−{k} =
∑

0<j<n

(−1)j−kf{j,j+1,...,n} ◦ f{0,...,j} −
∑

0<j<n
j 6=k

(−1)j−kf[n]−{j} (2)

Then df[n] = 0, which satisfies (?) and we can check using the Leibniz rule that df[n]−{k} satisfies
(?) as well, so ({Xi}0≤i≤n, {fI}I) is the desired n-simplex.

We will now show that Ch(RMod) forms a differential graded category, so that Ndg(Ch(RMod))
forms a quasi-category.

Proposition 22. The objects of Ch(RMod) form a differential graded category, where to any
two chain complexes A•, B• we assign the mapping complex Hom(A•, B•)∗, a chain complex of
Abelian groups where:

Hom(A•, B•)n :=
∏
m∈Z

Hom(Am, Bn+m)

and the differentials are given by: (dn(f))m := dBn+m ◦ fm − (−1)nfm−1 ◦ dAm where f =
(fm) ∈

∏
m∈Z Hom(Am, Bn+m). The bilinear composition ◦ : Hom(B•, C•)q × Hom(A•, B•)p →

Hom(A•, C•)p+q is given by:
(g ◦ f)m := gp+m ◦ fm

which clearly satisfies (h ◦ (g ◦ f))m = ((h ◦ g) ◦ f)m, and we can check the Leibniz rule:

dp+q(g ◦ f)m = dCp+q+m ◦ (g ◦ f)m − (−1)p+q(g ◦ f)m−1 ◦ dAm
= dCp+q+m ◦ gp+m ◦ fm − (−1)p+qgp+m−1 ◦ fm−1 ◦ dAm
=
(
dCp+q+m ◦ gp+m − (−1)qgp+m−1 ◦ dBp+m

)
◦ fm

+ (−1)qgp+m−1 ◦
(
dBp+m ◦ fm − (−1)p ◦ fm−1 ◦ dAm

)
= (dg)p+m ◦ fm + (−1)qgp+m−1 ◦ (df)m

= (dg ◦ f)m + (−1)q(g ◦ df)m

Remark. The mapping complex Hom(A•, B•) used above is just the total complex totΠ(Hom(A•, B•)).

3At the time of writing, the construction given in [7] contained an error, which is fixed here.
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First, we describe Ndg(Ch(RMod))n for n ≤ 2. Ndg(Ch(RMod))0 consists of the objects
of Ch(RMod). Ndg(Ch(RMod))1 consists of the pairs ({A•, B•}, {f}) where f = (fm) ∈
Hom(A•, B•)0 satisfies df = 0, i.e. dBm ◦ fm = fm−1 ◦ dAm for all m, and we have:

∂0 (({A•, B•} , {f})) = A•

∂1 (({A•, B•}, {f})) = B•

In other words, Ndg(Ch(RMod))1 consists of the chain maps f : A• → B• and the face operators
assign to f its domain and codomain.

Ndg(Ch(RMod))2 consists of pairs ({A•, B•, C•}, {f, g, h, z}) where f : A• → B•, g : B• →
C•, h : A• → C• are chain maps and z : A• → C•+1 satisfies dz = g ◦ f − h, i.e. dCm+1 ◦ zm +
zm−1 ◦ dAm = gm ◦ fm − hm. The face operators are:

∂0 (({A•, B•, C•}, {f, g, h, z})) = ({A•, B•}, {f})
∂1 (({A•, B•, C•}, {f, g, h, z})) = ({A•, C•}, {h})
∂2 (({A•, B•, C•}, {f, g, h, z})) = ({B•, C•}, {g})

5.2 n-morphisms in Ch(RMod)

We are now ready to describe Ndg(Ch(RMod)) as a quasi-category with the language developed
in Section 3. From the above description, a morphism φ : A• → B• consists of a chain map
φf : A• → B•. The identity morphism ιA• is the identity chain map.

Given morphisms φ, ψ : A• → B•, a 2-morphism τ : φ⇒ ψ is a pair ({A•, B•} , {φf , ψf , idB• , τz})
where τz : A• → B•+1 satisfies:

dm+1 ◦ (τz)m + (τz)m−1 ◦ dm = (φf )m − (ψf )m

i.e. τz a chain homotopy from φf to ψf . The identity 2-morphism at φ is

jφ = ({A•, B•} , {φf , φf , idB• , 0})

We can now construct something new: recall that in Definition 14 we introduced the concept
of a 3-morphism ρ : τ V υ. We can find out what this means for chain complexes, but first
we must compute Ndg(Ch(RMod))3: after some unpacking, one finds that it consists of pairs
ρ = ({A•, B•, C•, D•}, {f, g, h, i, j, k, x, y, z, w,Ω}) where:

• f : A• → B•, g : A• → C•, h : A• → D•, i : B• → C•, j : B• → D•, k : C• → D• are chain
maps;

• x : A• → C•+1, y : A• → D•+1, z : A• → D•+1, w : B• → D•+1 satisfy:

dx = i ◦ f − g
dy = j ◦ f − h
dz = k ◦ g − h
dw = k ◦ i− j

• Ω : A• → D•+2 satisfies dΩ = k ◦ x− y + z − w ◦ f .

The face maps are

∂0(ρ) = ({A•, B•, C•}, {i, j, k, w}))
∂1(ρ) = ({A•, C•, D•}, {g, h, k, z}))
∂2(ρ) = ({A•, B•, D•}, {f, h, j, y}))
∂3(ρ) = ({A•, B•, C•}, {f, g, i, x}))
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So for 2-morphisms τ = (({A•, B•}, {φf , ψf , idB• , τz})) and υ = (({A•, B•}, {φf , ψf , idB• , υz})),
a 3-morphism ρ : τ V υ is a pair:

({A•, B•, C•, D•}, {φf , ψf , idB• , τz, υz, 0,Ω})

such that Ω : A• → D•+2 satisfies Ωm−1 ◦ dm − dm+2 ◦ Ωm = τz − υz. This turns out to be the
same as the definition of higher homotopy that one obtains by considering chain maps from the
total complex tot(tot(A• ⊗ I•)⊗ I•) to B•.

From here it is easy to see the pattern: 3-morphisms ρ, π : τ V υ are 4-isomorphic if there
exists a Ξ : A• → B•+3 such that Ξm−1 ◦ dm + dm+3 ◦ Ξm = ρΩ − πΩ, and so on. Informally, an
n-morphism between two (n− 1) morphisms α, β is a degree n− 1 map Φ : A• → B•+n−1 such
that Φm−1 ◦ dm + (−1)ndm+n−1 ◦Φm = α−β (where we have neglected to specify the simplicial
set structure).

Lastly, we describe the composition of morphisms. We can use the construction in Theorem
21 to obtain expressions for the ‘horn fillers’, i.e. extensions of horns Λnk . In Section 3, we saw
that composition corresponds precisely to such extensions, so we can write down expressions for
these composites in the case of chain complexes.

Let φ = ({A•, B•}, {φf}) and ψ = ({B•, C•}, {ψf}). Applying the expression (2) from
Theorem 21 when n = 2 and k = 1 gives the map ψf ◦ φf , and the extension is:

τ := ({A•, B•C•}, {φf , ψf , ψf ◦ φf , 0})

which is indeed a 2-simplex. The composite of 1-morphisms φ and ψ is then given by: ∂1(τ) =
({A•, C•}, {ψf ◦ φf}), as expected.

2-morphisms, as discussed in Section 3, can be composed three at a time, in two different
configurations, corresponding to the two horns of ∆3. A special case is vertical composition of
pairs of 2-morphisms: if φ, ψ, χ : A• → B• with τ : φ⇒ ψ and υ : ψ ⇒ χ, then the construction
in Theorem 21 yields the composite 2-morphism φ ⇒ χ given by ({A•, B•}, {φf , χf , idB •, τz +
υz}). We can verify that indeed, τz + υz is a homotopy from φf to χf .

Similarly for horizontal composition: if φ, ψ : A• → B•, π, χ : B• → C•, with τ : φ⇒ ψ and
υ : π ⇒ χ, then there is a composite4 given by ({A•, B•, C•}, {φf , πf , (χ◦ψ)f , υz ◦ψf +πf ◦τz}).
Again, we can verify that υz ◦ ψf + πf ◦ τz is a homotopy from πf ◦ φf to χf ◦ ψf .

6 Conclusion

What we have seen is that all of the desired∞-categorical structure of chain complexes arises as
a purely combinatorial consequence of our chosen model. Working out the form of n-morphisms
is routine, if laborious (and should lend itself well to manipulation by a computer). The should
be contrasted with the “näıve approach” to ∞-category theory, attempted in the introduction,
where nothing was routine.

The methods that we have used can be applied elsewhere to build∞-categories. In particular,
we can make an quasi-category out of any differential graded category, and the morphisms will
not be hard to characterise, as we have seen.

4Note that in this case the composite 2-simplex we describe does not strictly fit our definition of 2-morphism,
though it can be used to construct the desired 2-morphism.
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